
Learning tools in course on Semantics of Programming
Languages

William Steingartner, Valerie Novitzká

Faculty of Electrical Engineering and Informatics
Technical University of Košice, Slovakia

September 18-21, 2017

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 1/19

Introduction

Motivation
on the present the computer science increases making use of formal models to help
the understanding of complex software systems and to reason about their
behaviour;
all of the tools and techniques based on formal methods in software development
are well grounded in formal models of system execution which are rooted in the
formal semantics of the underlying programming languages;
semantics of programming languages is important for software engineers and IT
experts to understanding the meaning of programs and/or behaviour of them;
we present a package of learning tools which plays an important rôle in our course
on Semantics of programming languages;
this package is dedicated for teachers and also for students.

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 2/19

Our software package

How it works

Compiler

J ane → AM code

Compiler

AM code → J ane

Emulator

AM code

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 3/19

Language J ane

consists of traditional syntactic constructions of imperative languages;
for defining formal syntax of J ane the following syntactic domains are introduced:

n ∈ Num - for digit strings;
x ∈ Var - for variable names;
e ∈ Expr - for arithmetic expressions;
b ∈ Bexpr - for Boolean expressions;
S ∈ Statm - for statements.

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 4/19

Language J ane - Syntax

The elements n ∈ Num and x ∈ Var have no internal structure from semantic point of
view.

The syntactic domain Expr consists of all well-formed arithmetic expressions created by
the following production rule

e ::= n | x | e+ e | e− e | e ∗ e | (e).

Boolean expression from Bexpr can be of the following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b | (b).

As the statements S ∈ Statm we consider five elementary Dijkstra’s statements:

S ::= x := e | skip | S;S | if b then S else S | while b do S.

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 5/19

Structural operational semantics of J ane

the meaning of program is expressed as a change of state s, where

s ∈ State = Var→ Z;

state plays passive role when a value of arithmetic or Boolean expression is
evaluated:

E : Expr→ (State→ Z) B : Bexpr→ (State→ B) ;

the semantics of statements is defined by rules which describe how a state is
changed by an execution of a given statement;
the change of state in structural operational semantics is expressed as transition
relation.

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 6/19

Transition relations

Transition relation describes individual step of the statement execution:

〈S, s〉 ⇒ α

Possible outcomes are:
if the computation of S from s has terminated and the final state is s′:

〈S, s〉 ⇒ s′;

if the computation of S from a state s is not completed and the execution
continues with the substatement S′ in a state s′:

〈S, s〉 ⇒
〈
S′, s′〉 ;

if no rule is applicable, then the execution is stopped and this configuration is a
stuck.

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 7/19

Operational semantics as transition system

a model of structural operational semantics is a transition system which models a program
behavior on a state space;
the change of state is defined for particular statements by inference rules;
a transition 〈S, s〉 ⇒ s′ is a relation between input state s and output state s′;

〈x := e, s〉 ⇒ s[x 7→ E JeKs] (1os)

〈skip, s〉 ⇒ s (2os)

〈S1, s〉 ⇒ 〈S′
1, s′〉

〈S1; S2, s〉 ⇒ 〈S′
1; S2, s′〉

(31
os)

〈S1, s〉 ⇒ s′

〈S1; S2, s〉 ⇒ 〈S2, s′〉
(32

os)

BJbKs = tt
〈if b then S1 else S2, s〉 ⇒ 〈S1, s〉

(4tt
os)

BJbKs = ff
〈if b then S1 else S2, s〉 ⇒ 〈S2, s〉

(4ff
os)

〈while b do S, s〉 ⇒ 〈if b then (S; while b do S) else skip, s〉 (5os)

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 8/19

Example 1

Consider the statement

if (x <= y) then max := y else max := x

and the initial state s = [x 7→ 9, y 7→ 7]. The derivation sequence is as follows:

〈if (x <= y) then max := y else max := x, [x 7→ 9, y 7→ 7]〉 ⇒

〈max := x, [x 7→ 9, y 7→ 7]〉 ⇒

[max 7→ 9, x 7→ 9, y 7→ 7] .

It follows from the resulting state, that the maximum of the given input values is 9.

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 9/19

Abstract machine

is a part of structural operational semantics and it serves for abstarct
implementation of programs;
consists of

I instructions;
I a sequence of instructions forms a code of AM;
I a set of translation functions translate program in J ane to an AM

code, e.g.:

T E Jif b then S1 else S2K = T BJbK : BRANCH (T S JS1K, T S JS2K) ;

I the semantics of instructions;
an execution of a code is expressed as a sequence of configurations of
the form

〈c, st, s〉 .

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 10/19

Compiler from J ane to AM code

Module specification
program is designed as an application providing the translation of a program written in
J ane language into code of AM;
input is a source program in J ane, output is a final code: either sequence of AM
instructions or XML form;
program contains obvious compiler phases: lexical analysis (tokenization), syntax analysis
(top-down parsing with error recovery), semantic analysis (type mismatch control);

Classes
the main class GenerateJPJtoAM UI provides communication and interaction with user;
class InputTokenizer represents a lexical analysis;
class RegexPatterns is used in syntax analysis and it provides the regular expressions for
matching the keywords of the language;
class Generator is used as generator of instructions;
classes StoreGenerator, SkipGenerator, IfGenerator, WhileGenerator, BooleanGenerator,
XmlGenerator - for particular statements, expressions and XML output.

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 11/19

Inside the compiler

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 12/19

Example 2: Example of using the compiler
Consider the program from Example 1. Our module translates it to the AM code:

FETCH− y : FETCH− x : LE : BRANCH (FETCH− y : STORE−max, FETCH− x : STORE−max)

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 13/19

Reverse compiler from AM code to J ane

Module specification
program is designed as an application providing reverse translation of an AM code into
program written in J ane language;
program reads an input and starts with splitting the input sequence into particular
instructions storing them in a list;
the next step is recognizing the instructions in the list by matching with paterns and
building up the program code;
a stack is used for building up the arithmetic and Boolean instructions.

The main rules for instructions
STORE provides assignment with an expression on the right-hand side constructed from
stack;
EMPTYOP provides an empty statement;
BRANCH runs two other recursive code buildings: both for the code, then the if− then
statement is constructed with the expression constructed from the stack;
LOOP runs two other recursive code buildings: for Boolean expression and for the code,
then the while− do statement is constructed.

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 14/19

Example 3: Example of using the reverse compiler
Consider the instruction sequence from Example 2. Our module translates it to the program
code:

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 15/19

Emulator of AM code

Module specification
program is designed as an application providing full processing of code respecting the
semantics of AM instructions;
an input code is analyzed by matching the patterns of instructions, and the sequence is
split into particular instructions;
during the analysis all variables in an input source are found and put into the table of
variables;
during the stepwise execution the new state on a stack and in memory state are computed;
the program displays an actual AM configuration before and after the execution of an
actual instruction;
although the input program is syntactically correct, it can contain logical error and during
the program execution an infinite cycle can occur. Emulator identifies the number of loops
and if this number is greater or equal to the upper limit of using the virtual machine
stack, then the cycle is marked as infinite.

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 16/19

Example 4: Example of using the code emulator

Consider the code in Example 2. This module provides stepwise execution of AM code as it is
illustrated in the following table.

Instruction Stack State
FETCH− y ε [x 7→ 9, y 7→ 7]
FETCH− x 7 [x 7→ 9, y 7→ 7]
LE 9 : 7 [x 7→ 9, y 7→ 7]
BRANCH(. . .) ff [x 7→ 9, y 7→ 7]
FETCH− x ε [x 7→ 9, y 7→ 7]
STORE−max 9 [x 7→ 9, y 7→ 7]
ε ε [max 7→ 9, x 7→ 9, y 7→ 7]

Every row in this table describes one execution step. The first column contains an instruction to
be executed, the second column contains stack and the third contains the state before
execution. The last row provides the result state with the empty stack.

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 17/19

The future

How it could work

Compiler

J ane → AM code

Compiler

AM code → J ane

Emulator

AM code

Categorical semantics

states,morphisms

XML

Natural semantics

derivation trees

RISCAL (?), . . .

derivation sequences

XML XML

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 18/19

Thank you for your attention

William Steingartner, Valerie Novitzká Learning tools in course on Semantics of Programming Languages 19/19

	Main Part
	Introduction
	Our software package
	Language Jane
	Language Jane - Syntax
	Structural operational semantics of Jane
	Transition relations
	Operational semantics as transition system
	Example 1
	Abstract machine
	Compiler specification
	Class diagram
	Example 2
	Reverse compiler specification
	Example 3
	Emulator specification
	Example 4
	The future of software package
	Thanks

